Thermoelectric properties of Bi$_2$Te$_3$, Sb$_2$Te$_3$ and Bi$_2$Se$_3$ single crystals with magnetic impurities

V.A. Kulbachinskii1,*, V.G. Kytin1, A.A. Kudryashov1 and P.M. Tarasov1

$^{(1)}$M.V. Lomonosov Moscow State University, 119991 GSP-1, Moscow, Russia

*Corresponding Author: E-mail: kulb@mig.phys.msu.ru

Keywords: bismuth-antimony-telluride, thermoelectrics, magnetic impurity, diluted magnetic semiconductors

Abstract:
Semiconductors containing transition or rareearth ions in an amount excluding direct exchange interaction between their magnetic moments are referred to as diluted magnetic semiconductors (DMS) [1]. Ferromagnetism was observed at low temperatures in AlIIBV and later in Bi$_2$Te$_3$, Sb$_2$Te$_3$ DMS [2]. In Bi$_{2-x}$Fe$_x$Te$_3$ the Curie temperature, T_c, increases as a function of x up to $T_c = 12$ K for $x = 0.08$. In n-Bi$_{2-x}$Fe$_x$Se$_3$ samples ferromagnetism was not detected. In Sb$_{2-x}$Cr$_x$Te$_3$ the value of T_c is about 5.8 K at $x=0.43$at%. It is not only of a scientific interest but is also practically important because it offers strong possibilities of using a magnetic field for the control of properties of various devices. From this point of view, of special interest are thermoelectric compounds, especially those based on Bi$_2$Te$_3$, Sb$_2$Te$_3$, and related mixed crystals, because they are the most efficient currently available thermoelectric materials. In the present study temperature dependence of Seebeck coefficient S, electrical conductivity, heat conductivity and figure of merit of single crystals of p-Bi$_2$Te$_3$, n-Bi$_2$Se$_3$ doped by Fe and Sb$_2$Te$_3$ doped with Cr were carried out in the temperature interval $7<T<300$ K. At $T=4.2$ K Shubnikov-de Haas and Hall effect measurements have been measured in high-magnetic field up to 40 T. By increasing the Fe content, the hole concentration decreases in p-Bi$_{2-x}$Fe$_x$Te$_3$, while the electron concentration increases in n-Bi$_{2-x}$Fe$_x$Se$_3$. The hole concentration in Sb$_{2-x}$Cr$_x$Te$_3$ decreases with Cr-doping. This demonstrates that Fe or Cr act as donors. The Seebeck coefficient increases in p-Bi$_{2-x}$Fe$_x$Te$_3$ and Sb$_{2-x}$Cr$_x$Te$_3$ with increasing Fe or Cr content, while it decreases in n-Bi$_{2-x}$Fe$_x$Se$_3$. We found that magnetic impurity significantly increases Seebeck coefficient in p-Bi$_2$Te$_3$ and Sb$_2$Te$_3$ and decreases thermal conductivity. For Bi$_{2-x}$Fe$_x$Te$_3$ and Bi$_{2-x}$Fe$_x$Se the value of ZT increase at $T<100$ K. In the case of Sb$_{2-x}$Cr$_x$Te$_3$ dimensionless figure of merit ZT increase at $T>150$ K.

References: